MICROECONOMIC PROBLEMS
 CLASS \#1

Problem 1

An enterprise has a production function given by $F(K, L)=2 K L^{1 / 2}$. What would be the formula for $I(6)$?

Problem 2

How is the rate of technical substitution of capital by labour changing with the increase of labour inputs in the production function as in Problem 1.

Problem 3

Which of the definitions (postulates) concerning the properties of production functions will be fulfilled by a linear one with positive coefficients?

Problem 4

The following production functions are given:
a) $y=K L$
b) $y=A K^{a} L^{b}$, where $\mathrm{A}, \mathrm{a}, \mathrm{b}>0$
c) $\mathrm{y}=\min \{2 \mathrm{~K}, 3 \mathrm{~L}\}$
d) $y=a K+L b^{1 / 2}$, where $\mathrm{a}, \mathrm{b}>0$
e) $\mathrm{y}=2 \mathrm{~K}+3 \mathrm{~L}$
f) $y=2,5\left[0,3 K^{1 / 2}+0,7 L^{1 / 2}\right]^{3 / 2}$

For each of them:

1. Determine whether they exhibit increasing, decreasing or constant returns to scale;
2. Find the marginal rate of technical substitution and check whether it is decreasing;

Problem 5

The production function of an enterprise takes the form $Q=(K L)^{1 / 2}$. The price of capital is r and the price of labor is w.
a) Find the form of the short-term cost function of this enterprise, when its capital stockis $\mathrm{K}^{\prime}=25$ and $\mathrm{v}=\mathrm{w}=1$.
b) Find the long-term average cost function of this enterprise.
c) What costs will this enterprise bear when it produces 100 units of output, when the factor prices are $\mathrm{v}=4$ and $\mathrm{w}=16$?

