Homework no 2

1. Suppose that the firm has two possible activities to produce output. Activity a uses a1 units of good 1 and a2 units of good 2 to produce 1 unit of output. Activity b uses b1 units of good 1 and b2 units of good 2 to produce 1 unit of output. Factors can only be used in these fixed proportions. If the factor prices are ($\mathrm{w} 1, \mathrm{w} 2$), what is the cost function for this technology?
2. The prices of inputs ($x 1, x 2, x 3, x 4$) are $(4,1,3,3)$.
a. If the production function is given by $f(x 1, x 2, x 3, x 4)=\min \{x 1, x 2\}+\min \{x 3, x 4\}$, what is the minimum cost of producing one unit of output?
b. If the production function is given by $f(x 1, x 2, x 3, x 4)=\min \{x 1+x 2, x 3+x 4\}$, what is the minimum cost of producing one unit of output?
3. Irma's Handicrafts produces plastic deer for lawn ornaments. "It's hard work", says Irma, "buy anything to make a buck". Her production function is given by $f(x 1, x 2)=\left(\min \left\{x 1,2^{*} \times 2\right\}\right)^{0.5}$, where $x 1$ is the amount of plastic used, $x 2$ is the amount of labor used, and $f(x 1, x 2)$ is the number of deer produced.
a. Draw a production isoquant representing input combinations that will produce 4 deer.
b. Does this production function exhibit increasing, decreasing, or constant returns to scale?
c. At the factor prices ($\mathrm{w} 1, \mathrm{w} 2$), the cost of producing y deer with this technology is $c(w 1, w 2, y)=$?
4. A given firm has the following production technology, i.e., $f(x 1, x 2)=\left(2^{*} x 1+x 2\right)^{0.5}$. At the factor prices $(3,1)$, what is the minimal cost of producing y units of output?
