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On Production Theory

N

“I know that even as a student I was
drawn to the theory of production
rather than to the formally almost

identical theory of consumer choice. It
seemed more down to earth.”

(Robert M. Solow, "Growth Theory and After”.
Nobel Lecture, Stockholm, Sweden, December 8,
1987.)
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In comparison with other fields

#Game theory
#Economics of Information

#Microeconometrics
#Psychological & Experimental Economics
#Time Series Analysis




Neo-classical Theory of Production

N

#Production function approach

= Production function > Profit max/Cost
min > factor demands > Profit/Cost
function

#Dual approach to production
analysis

m Profit/Cost function » factor demands -
production function/structure




Building Blocks of the Theory

#Production function
#Cost minimization
#Profit maximization
#Cost function
#Profit function




Some basic concepts

#The set of all technologically feasible
production plans is called the firm’s
production possibilities set and will
be denoted by Y, a subset of R". The
set Y is supposed to describe all
patterns of inputs and outputs that are
technologically feasible.
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Input requirement set

#If x is a vector of inputs that can produce
y units of output, then the input
requirement set can be written as:

V(y)={xin R} : (y,—x) is in Y}

The input requirement set is the set of all
input combinations that produce at least y
units of output.




1. Production function defined

#A production function gives the
maximum possible output which can be
produced from given quantities of a set
of inputs. It can be denoted as :

y=f(x)
where X is an n-dimensional vector of

nonnegative inputs and vy is a scalor of
nonnegative output.




Assumptions on production function

Properties of f(x) (1A):

.

2.

L

(a) if x’=x, then f(x")= f(x) (monotonicity);

(b) if x’>x, then f(x")> f(x) (strict monotonicity)?;

(a) V(y)=Ix: f(x)=y]isaconvex set (quasi-concavity);

(b) f(Ox°+(1-0)x*)=0/(x’)+(1-0) f(x*) for 0 =0 =<1 (con-
cavity);

(a) f(0,)=0, where 0, is the null vector (weak essentiality);

(b) (X1, ey Xiz150, Xy 1y evy Xn) =0 foOr all x; (strict essential-
ity);

the set V(y) is closed and nonempty for all y > 0;

f(x) is finite, nonnegative, real valued, and single valued for all

nonnegative and finite x;

(a)  f(x) is everywhere continuous; and

(b)  f(x) is everywhere twice-continuously differentiable.




Monotonicity

MONOTONICITY. Ifxisin V(y) and x’ > x, then x" is in V(y).

If we assume monotonicity, then the input requirement sets depicted in
Figure 1.2 become the sets depicted in Figure 1.3.

FACTOR 2 _ FACTOR 2 s FACTOR 2

.........

= N W B
I

- N W &
I

4

3r : Y
2

1

| 1 I

4 FACTOR1 1 2 3
A B c
Monotonicity. Here are the same three input requirement
sets if we also assume monotonicity.




Convexity

CONVEXITY. Ifx andx' are in V(y), then tx + (1 —t)x’ is in V(y)
for all0 <t < 1. That is, V(y) is a convex set.
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Regularity

N

'REGULAR. V(y) is a closed, nonempty set for all y > 0.

1. The nonemptiness implies that it is always
possible to produce any positive output,

l.e., a feasibility assumption.

2. The closedness assumption is made to include the
boundary of V(y).



Production Function (figure 1)
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Production function (figure 2)
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Figure 1.9 Law of variable proportions and elasticity of scale.




Characteristics of production
‘structure

#Elastcity of substitution
#Elastsicity of scale
#Technical change




Technical rate of substitution

N

For a production function with two inputs y=f(x,,x,)

The associated change in the output is approximated by

i af
dy = 32:1 d.’l’:l + 31:2 d.‘I!g.

Since output remains constant, we have

= af d.'I,‘l -+ if*di’g,

0= 52 B,

which can be solved for
dry _8 f/0x

TRS= 42, = "¢ /02,




Technical rate of substitution (graph)

FACTOR 2

FACTOR 1

The technical rate of substitution. The technical rate of
substitution measures how one of the inputs must adjust in order
to keep output constant when another input changes.
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Elasticity of substitution (two inputs)

The technical rate of substitution measures the slope of an

Isoquent. The elasticity of subsititution measures the
curvature of an isoquant (Hicks, 1963)

A(zz/z1)
xo /a1
ATRS

TRS

The elastcity of substitution measures the percentage
change in the factor ratio diveided by the percentage
change in the TRS, with output being held fixed.




Alternative expressions

N

#1n logarithmic derivative form

dIn(zy/x9)
~ dIn|TRS|
#In terms of derivatives of f(x,, x,)
~fifa(xy [1+X2 [2)

B x.xz(f,,f§—2f.zf.f1+f21f,i)’
where f;=3f/dx; and f;;=3%f/dx; dx,.

g
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Elasticity of substitution (n inputs)

ﬁjlb@AJlempartial elastcity of substitution:

Ei-’ﬁ'ﬂﬁ{ , -. (0.15
XiXj F‘ :

wﬁere F is the bordered Hessian determinant

0 fi fr - Ja
fii v S o Jan
F=\|fy o ~San |

Ifn f]n e fnn

. - - . D )
and F;; is the cofactor associated with f;;. Both o;; and o;; are sym
metric measures of the degree of substitutability between two mputs.

U,‘j=




Returns to scale

CONSTANT RETURNS TO SCALE. A {echnology ezhibits con-
“'stant returns to scale if any of the following are satisfied:

(3) f(tx) = tf(x) for allt > 0; i.e., the production function f(x) is homo-
geneous of degree 1.

|
INCREASING RETURNS TO SCALE. A technology ezhibits in-

creasing returns to scale if f(tx) > tf(x) for all t > 1.

DECREASING RETURNS TO SCALE. A technology exhibits de-
creasing returns to scale if f(ix) <tf(x) for all t > 1.




Elasticity of Scale

Let y = f(x) be the production function. Let ¢ be a positive scalar, and
consider the function y(t) = f(¢x). If t = 1, we have the current scale of
operation; if £ > 1, we are scaling all inputs up by ¢; and if t < 1, we are
scaling all inputs down by t.

The elasticity of scale is given by

evaluated at ¢ = 1. Rearranging this expression, we have

dy(t) t ‘ _df(tx) ¢
dt oyli=1 dt o f(ix) le=1

e(x) =

Note that we must evaluate the expression at ¢ = 1 to calculate the elas-
ticity of scale at the point x. We say that the technology exhibits locally
increasing, constant, or decreasing returns to scale as e(x) is greater, equal,
or less than 1.
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Alternative expression

For computational purposes, elasticity of scale can be
directly evaluated to obtain

dIn f(Ax) « I‘F:EE,..
dln A\ =1 i=1 BXf b4 i

Thus, the elasticity of scale is the sum of the output
elasticities.




2. Profit Maximization

If the firm produces only one output, the profit function can be written
as

m(p,w) = max pf(x) - wx

where p is now the (scalar) price of output, w is the vector of factor prices,
and the inputs are measured by the (nonnegative) vector x = (zy,...,z,)

First order condition

af(x")
3:13'1'

L

p =w,  1=1-n,

Or
pDf(x") = w.

D) = (2L 016))

Or, 7 Oz,



2.1 Comparative statics using the first-
order conditions (single input)
The problem facing the firm is

N

max p flx) —wzx.
first-order and second-order conditions
pf'(z(p,w)) —w =0

pf"(z(p,w) < 0.
Differenciate the first-order condition w.r.t. w:

pf"(z(p, w))dxgpi;w) —1=0.

dz(p,w) _ 1
dw  pf"(z(p,w))




Second order condition (single input)

QUTPUT I1=py— wx

Slope = wip Y=

[lip

INPUT

Profit maximization. The profit-maximizing amount of in-
put occurs where the slope of the isoprofit line equals the slope
of the production function.

df(x

ﬂzjgn.




Second order condition (multiple inputs)

|

%

matrix of second derivatives of the production function must be negative
semidefinite at the optimal point; that is, the second-order condition
requires that the Hessian matrix

D) = (52)

must satisfy the condition that hD?f(x*)h* < 0 for all vectors h. (The
superscript ¢ indicates the transpose operation.) Note that if there is only
a single input, the Hessian matrix is a scalar and this condition reduces to
the second-order condition we examined earlier for the single-input case.




Difficulties

# The production function may not be differentiable

N

" (e.g., Leontief case).

# Valid only for interior solutions. For boundary
solusions, use Kuhn-Tucker conditions:

af(x)—wigo if 2; = 0
3:11,;
of(x) ]
. — fx, ]
P v w; =0 ifx; >0

# Profit can be unbounded (e.g., CRS)

pf(x*) —wx* =7" > 0.

pf(tx*) — wix* = t[pf(x*) — wx*] = t7* > 7*.
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2.1 Comparative statics using the first- order
conditions (two inputs, p=1)

Of (1w, wg), z2(wy, wa))

% = uh
82:1
Of(z1(wq, wa), x2(wy, wa))
- = gy,
dit:g

Differentiating with respect to wy, we have

&I]_ 3:1’:;;
fm Fws + fi2 B

Ox Ox

Differentiating with respect to ws, we have

ﬁ:ﬂl 3:132 B
f113w2+f12§w2_ﬂ
ﬂI]_ 6‘:1:2 .
fa1 g +fnm = 1.




Comparative statics (two inputs, p=1)

Writing these equations in matrix form yields
~F
dx; Oz
(fn flz) (Eaﬁlf Bai_ué) =(1 [])
faa [ x z 0 1)
21 22 Bi_,[;r?-; %é

Solving for the matrix of first derivatives, we have

dr; Oz —1  The inverse of a symmetric
gij g’]ﬂ.) - (j:“ i”) negative definite matrix is
Ju.  Tw am symmetric negative definite.

1) dz;/ow; < 0, for i = 1,2, since the diagonal entries of a negative
definite matrix must be negative.

2) dz;/0w; = Ox;/0w; by the symmetry of the matrix.



Comparative statics (n inputs, p=1)

the first-order conditions for profit maximization

Df(x(w)) — w = 0.

If we differentiate with respect to w, we get
D2 f(x(w))Dx(w) - I=0.
Solving this equation for the substitution matrix, we find

Dx(w) = [D*f(x(w))] "

dx = Dx(w)dw'

Multiplying both sides of this equation by dw yields

dw dx = dwDx(w)dw' < 0.




2.2 Properties of the Profit Function

]

\|J
Properties of the profit function.

1) Nondecreasing in ﬂutput prices, nonincreasing in input prices. If pl > p;
for all outputs and p; < p; for all inputs, then n(p') > n(p).

2) Homogeneous of degree 1 in p. n(tp) = tn(p) for all t > 0.

3) Convez in p. Let p”" =tp+ (1 —t)p’ for 0 <t < 1. Then 7(p") <
tr(p) + (1 - t)n(p’).

4) Continuous in p. The function (p) is continuous, at least when m(p)
1 well-defined and p; > 0 fori=1,...,n




Hotelling’s lemma

N

Hotelling’s lemma. (The derivative property) Let y;(p) be the firm’s
net supply function for good i. Then

_ On(p)
yi(p) = Bp:

fori=1,...,n,

assuming that the derivative erists and that p; > 0.




3. Cost minimization

mMin wx
xX

such that f(x) = y.

LA x) =wx = A(f(x) — y)



Geometric intuition of cost min.

FACTCR 2

C=w,X; + W,X,

Cost-minimizing point

flx. %) =y

FACTOR 1

Cost minimization. At a point that minimizes costs, the
isoquant must be tangent to the constant cost line.




Conditional factor demand functions

N

x(w, 1) must satisfy the first-order conditions

fx(w,y)) =y
w — ADf(x(w,y)) = 0.

we will consider a simple two-good example. In this case the first-order
conditions look like

flz(un, wa, y), To(wy, we,y)) =

Of (21 (w1, wa, y), x2(wy, we, y )
dzy

'E.flzl"l I1_1-*'-’11 g, y.]:- :rifl:wh Wy, y”
ﬂl‘g

wl—;’I.

0

'lﬂ':g—.:\.




Conditional factor demand (con.)

G
5'f !'3:1‘:1 + ﬂ_f 5‘.‘1‘_3 =0
ﬂ:ﬂl l!j’wl !’323 ﬂwl N
l_ﬂlhiﬂ'ﬂfﬂ:cl n 5_?_{ Ory |  Of OA _ 0
__IBE? ﬂwl &R:lﬂ'ﬂfg E‘wl‘ 55[31 Iirj‘I.Ul o
“_Af #f on +Bz_fﬂ::3' _af 8A —o.
drgdry dun ﬁ':r:% duy | dxg dun

These equations ecan be written in matrix form as

[0\

U ~fi —f2 ;dw_l 0
- —Afi —Afa ZEIJf =1-11.
—fa —Afiz —Af i
2 22 KE@?)
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Using Cramer’s rule

0 0 =f
-hH -1 =Afn
dr;  |—=f: 0 —Afax =f_zz <0
HT.!J‘I - ﬂ' —_||r1 —fg H l
-fi —Afu —Afa
—fa =Afiz —Afm
0 -fi 0
e
Oz —Jz —AJ1z 201
duw, | 0 -fi -fa |~ H > D
-fi =Afun —Afa
—f2 =Afiz —Afa|




3.1 Properties of the Cost Function

]

i

Properties of the cost function.

1) Nondecreasing in w. If w' > w, then c(w',y) > c(w,y).
2) Homogeneous of degree 1 in w. c(tw,y) = tc(w,y) fort > 0.

3) Concave in w. c(tw + (1 — t)w',y) > te(w,y) + (1 - t)e(w',y) for
0<t<.

4) Continuous in w. c(w,y) is continuous as a function of w, for w > 0.




Shephard’s lemma

Shephard’s lemma. (The derivative property.) Let z;(w,y) be the
firm’s conditional factor demand for input i. Then if the cost function is
- differentiable at (w,y), and w; > 0 fori=1,...,n then

0
mi[wvy}=-%ww i"‘:lr“‘ﬁn'
]

Proof. The proof is very similar to the proof of Hotelling’s lemma. Let x*
be a cost-minimizing bundle that produces y at prices w*. Then define the
function

g(w) = ¢(w,y) — wx".

Since c¢(w,y) is the cheapest way to produce y, this function is always
nonpositive. At w = w*, g(w*) = 0. Since this is a maximum value of

g(w), its derivative must vanish:

-f‘?g[w*]l . aC(W*iy) o =1 ..
ow;  Ow; #i =0 t=hen

Hence, the cost-minimizing input vector is just given by the vector of deriva-
tives of the cost function with respect to the prices. I




4. Duality

#Given a cost function we can “solve for” a
technology that could have generated that
cost functiton. This means that the cost
function contains essentially the same
information that the production function
contains. Any concept defined in terms of
the properties of the production function
has a “dual” definition in terms of the
properties of the cost function and vice
versa (Varian, 1992).




Sufficient conditions for cost functions

When ¢(w,y) is a cost function. Let ¢(w,y) be a differentiable func-
tion satisfying

1) o(tw,y) = td(w,y) for allt > 0;

2)d(w,y) 20 forw>0andy > 0;
|
3) d(W',y) = d(w,y) for w' > w;

4) o(w,y) is concave in w.

Then ¢(w,y) is the cost function for the technology defined by V*(y) =
{x>0:wx >¢(w,y), for all w > 0}.




Elasticity of scale and the cost function

Given a production function f(x) we can consider the local measure of
returns to scale known as the elasticity of scale:

N

L

df (tx) t o_ cwy)ly _ AC(y)
ex) = — 4 f{x)‘t=1 then )= 5w, y)/0y = MC(y)
notice 2im1 i{}a?“:? |

e(x*) =

f(x*)

Since x* minimizes costs it satisfies the first-order conditions that w; =
)aaf ; . Furthermore, by the envelope theorem, A = de(w,y)/dy. (See
Chapter 5, page 76.) Thus,

Yo Wity _ o(w,y)/f(x*) _ AC(y)
Af(x*) dc(w,y)/0y  MC(y)

e(x*) =




Elasticity of substitution and the cost function

““The (direct) elastcity of substitution:

_dIn(xy/x;)  dln(xy/x))
7= dlﬂ(f]/fz) B dln(WI/WE)

The Allen partial elastcity of substitution:

Fji Zi=1(@f(x)/oxi)xi  _ 4o
aj; = ;; f XiX; '—E!J;SJ

Here, S; is the jth cost share (w;x;/c(w, ¥)).




‘Data for application

®C
®C
®C

ninese aggregate economy
ninese provincial data

ninese enterprise data

#Pen world data?

#Summers & Heston (1996)
#Barro and Sala-I-Martin (1995)
#Nordic plant data
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