MICROECONOMIC PROBLEMS CLASS \#3

Problem 1

The production function of a certain enterprise is $Q=100 \mathrm{KL}$. The price of K is $120 \mathrm{zł}$ and the price of L is 30 z . The enterprise is to produce 1000 units of output.
a) How many units of factors K and L should this enterprise employ? Present the analytical and graphical solution.
b) What is the minimum production cost?
c) Find and present graphically how inputs change when the price of L increases to 40 z .
d) Find and present graphically how inputs change when the price of L decreases by $6 \mathrm{zł}$.

Problem 2

The production function of a certain enterprise is $Q=K^{0,5} L^{1,5}$ The enterprise currently employs 25 units of K (the price of K is 5) and 125 units of L (the price of L is 10). Does this entrepreneur act rationally (does he/she minimize the costs)? More units of which factor should he/she employ? How much of K should he/she take when using 125 units of L? How much of L should he/she take when using 25 units of K ? How much of K and L should he/she employ when producing 200 units of Q ?

Problem 3

Company has two factories manufacturing the same product. Costs functions are given by $T C\left(y_{1}\right)=2 y_{1}^{2}+80$ and $T C\left(y_{2}\right)=6 y_{2}^{2}+50$ production plan (hmmm... a strange register in this course, isn't it) assumes the output of 40 units, while the company is minimising cost. How many units of y should be produced in each of these factories?

Problem 4

A firm has a production function given by $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\min \left\{2 x_{1}+x_{2}, x_{3}+2 x_{4}\right\}$. What is the cost function for this technology?

Problem 5

A firm has a production function $\mathrm{y}=\mathrm{x}_{1} \mathrm{x}_{2}$. If the minimum cost of production at $\mathrm{w}_{1}=\mathrm{w}_{2}=1$ is equal to 4 , what is y equal to?

